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ABSTRACT 

5” L?L3 
I n  t h e  j o in t  portion of the intertank of a missile, due t o  t h e  

varying thickness of each p a r t  of the shel l ,  the low temperature f u e l  

used i n  the tank and the  comparative high temperature induced from 

t h e  so la r  radiation may generate a highly polynomial d i s t r ibu t ion  

o f  the  temperature a t  t h i s  region. The thennal stresses induced 

i n  t h i s  manner a re  important i n  considering the th in  she l l  construc- 

t i on  of the joint .  

The problem is solved under the assumption of u n i f o n  tempra- 

ture  d is t r ibu t ion  along s p a t i a l  axis of the  cyl indrical  Ehell and 

constant i n  the whole semi-elliptical bulkhead. 

p a d i e n t  i n  the a x i a l  ax is  is accepted from an experimental resul t  

b u t  with modifications. Solution of this problem following an in- 

vest igat ion based on the membrane theory leads t o  the f a c t  of the 

existence of geometrical compatibility. The edge e f f ec t s  induced 

on considering the continuity of displacements and bending moment 

The temperature 

give the  sa t i s fac tory  solution f o r  the present analysis. - 
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CHAPr%R I 

INTRODUCTION 

1.1 Preface 

I n  the design of the intertank s t ructures  of missiles,  t h e  

s t resses  and deformations are largely influenced by the thennal e f fec t  

both from the  low tmperature  h e l u s e d  and the  comparatively high tan- 
.. 

perature caused by the solar  radiation during the stage of f i l l ,  standby 

and flight. The construction of the intertank, consisting of  a bulkhead 

and a cyl indrical  par t  connected with a s k i r t ,  is generally t h i n  compared 

with the  radius of curvature of the meridian of the shell. 

f e c t s  of t he  various s h e l l  components produced by the abntpt change of 

the curvature and by the  discontinuities i n  the  mechanical loadlng, show 

The edge ef- 

t h a t  t he  jo in t  portion ( the so-called Y-ring) is the  most important par t  

in the  design. 

which is then of the  same l oca l  character a s  the  e f f ec t  produced by the 

applied mechanical loads. 

The tanperature gradient may have an important e f fec t  

I n  the present analysis, the bulkhead has been taken as a semi- 

e l l i p t i c a l  she l l  i n  revolution, and the inter tank s k i r t  i s  a corrugated 

s k i n  cyl indrical  she l l  a s  shown i n  Figure 1, The temperature distribu- 

t ion ,  considered t o  be i n  the steady s t a t e  and constant over the semi- 

e l u p t i c a l  bulkhead, has no spat ia l  var ia t ion other than t h a t  i n  the lon- 

gi tudinal  direction. 

been worked out i n  Chapter I1 for  t he  temperature Indicated above, and 

An investigation based on the  membrane theory ha8 

1 
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t he  problczn has been solved f o r  the proper boundary conditions. 

lu t ion  of the edge e f fec t  is given i n  matrix f o n  i n  Chaptor 111. 

over, no mathmatical  solutions for  t h e  influence coeff ic ients  have been 

dorived, since it is understandable t h a t  such mater ia ls  may be found i n  

tho books concerning problems of e las t ic  foundations by M, Hetenyi [l]* 

and S. Timoshenko [ Z ] .  The numerical procedure i n  Chapter I V  together 

with the discussion i n  Chapter V may prosent a b e t t e r  understanding of 

the e n t i r e  problem in question. 

The 50. 

How- 

We employ here three basic assumptions (3 ; (1) The temperature 

is detonined independently of the defomations of t he  body, ( 2 )  The 

deformations a re  mall.  (3) The materials behave e l a s t i c a l l y  all the  

time. These i t e m  simply s t a t e  that  the coupllng between the thomal  

f i a l d  and the s t r e s s  f i e l d  mtty be omitted, t h a t  the  dlsplacment gra- 

d ien ts  are  suf f ic ien t ly  s n a l l  so that  no buckling can take place i n  the 

present analysis, and f ina l ly ,  the temperature changes and the  stresses 

will not be too large. 

1 

1.2 General sketch of the jo in t  

The inter tank,  as described i n  the preface, consists of a bulk- 

head and a cyl indrical  par t  connected with a sk i r t .  

includes the cap portion with unifom thickness and the variable w a l l  

thickness knuckle part ,  is a semi-ell iptical  shell .  

may be divided again in to  several  sections. 

V, V I ,  VII, and VIII have been used i n  the succeeding chapters represent- 

ing  the  d i f fe ren t  pa r t s  i n  the following figure, 

The bulkhead, which 

The cyl indrical  pa r t  

The nmbers I, 11, 111, I V ,  

*Nuwbers i n  brackets denote en t r i e s  in the  Idst of References. 

. 



I .  
r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I *  
I 
I 
I 
I 

I 

3 

1 

, 

Fig. l.--bneral sketch of the Joint (Y-rlng) 

Fundmentally the entire process of solving the stresses problm for the 

intertank consists of throe 8tepst (1 )  detenination of the manbrane 

stresses due to  the temperature load, (2) detemination of the stresses 

due to  edge loads, (3) superposition. 
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I .  CHAPTER 11 

MEXBRANE THEORY 

2.1 Introduction 

The general sketch i n  section 1.2 shows t h e  geometrical configu- 

ra t ion  of the  intertank. The t h i n  shell construction together with the  

assumption of mall deflect ion theory enables u s  t o  adopt t he  membrane 

theory a s  an analysis. For each of t he  d i f fe ren t  p a r t s  i n  Figure 1, the  

thermal s t r e s ses  and displacements induced from the  thennal loading, 

which i s  imposed by the  longitudinal varying temperature dis t r ibut ion,  
4 

may be obtained from the  llnoarizedmembrane equations derived i n  the fol-  

lowing sections. The a rb i t r a ry  constants involved i n  the  equations f o r  

each independent d i f fe ren t  p a r t  may be evaluated upon restoring the  con- 

t i n u i t y  of the p a r t s  investigated alone, and upon the  imposing of t h e  

boundary conditions f o r  t he  whole intertank. 

2.2 "hemal s t r e s ses  and displacements i n  a thin-walled c i r cu la r  
cy l indr ica l  s h e l l  with non-unifonn wall thickness and lonrritudinal 
temperature var ia t ion 

The analysis  of t h i s  section deals  with the  she l l  pa r t  I1 (see 

F'igure 1) and also, as a special  case of it, with the  p a r t s  I and V. 

Considering t h a t  the  var ia t ion of temperature takes plaue only 

i n  t h e  longitudinal d i rec t ion  and t h a t  the unifonn expansion of  t he  pe- 

r iphery i s  not subjected t o  any constraint  under t h e  thermal loading, 

and i n  as much as t h e  shell rsmdns cylindrical (c.f.2.3), only axial  

thermal stress can be induced. 

4 
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,.-.J-- ?& 
Sign contenti0 n $ 

Fig. 2.--Coordlnate system and general cyUndrical element 

A studying of a general cylindrical element shown In Figure 2 

leads to the equilibrium condition i n  d.al direction 

neglecting the higher order term, it gives us 

d ( 6 0 - Y  0 
that is 

so- = q, (3) 

and P are both h c t i o n s  o f  $, whereas the integration constant 

8 I may be determined by the boundary conditions imposed (see section 

2.6). 

We have the stress-strain relations 3 

- 0  
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Thereby it i s  understood that  no displacements along the  circum- 

ference may occur. Equation (4)b immediately leads t o  

and (4), gives 

where fa may be an a rb i t r a ry  function ofA : however, 8 close examination 1 

reveals t h a t  it does not depend on,d a 

By subst i tut ing equation (3) i n t o  equation (6) one obtains 

That is, fa i s  a constant. 

(7) 

Again, may be defined by t h e  boundary conditions. 

From (3), we have the  slope of the she l l  in the  axial  direct ion 
9 

i n  t h e  present sign convention as 

The second different ia t ion of  IFJ i s  

The mmbrane displacement id i s  then associated with a so-called 

membrane moment 

d’bJ M U D -  
d %& 
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is t h e  generally varLable 

i I 
7 

she l l  r igidi ty ,  

2.3 Thermal s t resses  and displacements i n  a constant wall  thickness 
c i rcu lar  cyl indrical  s h e l l  w i t h  lonRitudina1 tomperature variation 

Applying the same considerations used i n  t h e  previous section, 

we conclude tha t  the stresses are i n  the  axial direct ion only, 

i n  t he  present case of the  s h e l l  par t s  I o r  V (see Figure l), since the 

However, 

w a l l  thickness is unifom throughout the whole portion, the stress under 

consideration is constant. We know immediately from equation (1) tha t  

, 

I 

which has the  solution 

u-= 9 3  

where fa is another constant of integration. 

The stress strain re la t ion  may again be wr i t ten  I ~ ~ f . 2 ~ 2  1 

a u  L= as- O 

(14), becomes 

(141, 
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It is clear, f r o m  equation (14)c, that 

By substituting (13) 

will not be a Rurction of A 94 

the displacement i n  the t direction may be obtained 

The slope along the aJdal direction and the bending moment gen- 

are given by the equations (8) erated from the membrane displaceaent 

and (10). 

2*4 Thermal stressoo and displacements i n  a cylindrical shell w i t h  
~ corruaated skin subjected t o  lonaitudinal temperature variation 

Centroid 

OS the 
shell 

Fig. 3.--Coordlnate system for the corrugated 
skin and the general element 

I 
I 
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I n  the  cy l indr ica l  shell, the equilibrium equations fo r  any arbi-  

t r a r y  cross-sectional shape while subjected to  no external loading other  

than heat  input may be wri t ten 

a s  ax 
I 

q* -0 
It should be noted t h a t  

already takei i n t o  account. 

qs- cx Indicating moment equilibrium i s  

I 

The equations give u s  t h e  a rb i t r a ry  solut ions immediately. 

Qs -f ,  

n 

. 
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10 

s 
where R,, the radius of curvature of  t he  meridian, ij a function of,d 

However, i n  our case the ' in tegra l  of 6% over the  cross-section 

wil l  be constant; and since there i s  no'var la t ion i n  thickness of t h e  

s h e l l ,  equation (22) must have 

a f t  
bS 
- = o  

I 

Xence it is c lea r  {, will not be a function of 3~ or , and (22) may 

then be writ ten as 

w h i l e  subst i tut ing (21) i n to  (26), 'and i n  aocompsniment with (27), we 

have 

Because of dS + 0 it follows 

f l  = o  
and 

G i s - 0  

For convenience we will then denote ps by r. The following 

condition wi l l  be true by making use of (28) 
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J 
F0r consistency with the previous notations, l e t t e r  has been f 

used rather  than -f fs is a function of temperature only, which may 

be detexmined by the  boundary conditions. 

S t i l l ,  t he  quantity CJ- may have var ia t ion along 4 i n  viewing 

the  equatians (18) and (28). 

However, one should real ize  t h a t  the par t icu lar  coordinate system 

chosen i n  the present case ensure us t h a t  the  displacement along 4 W i l l  

be zero, since t h e  u n i f o n  expansion may only take place along the  direc- 

t i on  of Re. Besides, knowing tha t  while I n  the  boundary, a a l  dis- 

placement k w i l l  not be a function o f 4  , we then have the  following I , 

re1 a t  ions 

o r  

I 

(33) 

where 76  i s  a constant and 

(35) 

B u t t h e  condition f o r  - t o  be eerw everywhere enables us t o  
. a s  

. 
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w r i t e  
a r  --0 i s  

12 

(37) 

For'unifomity, we put . .  

= fL = q7 (38) 

Equaticns ( 3 5 )  and (36) may be rewrltten as 

Again, the rotation of the tangent of  the meridian and the mem- 

brane moment generated from the mmbrane displacement kl may be obtained 

by using the same expressions as (8) and (10). 
1 

2.5 Dimlacements of an elliptical head under unifonn temperature 
distribution 

I '  
Y 

. Fig, 4,-Coordinate system of the e l l i p t i c a l  ' 

head and the convention of signs 

. 
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The followlng equations have been derived according to membrane 

theory and assumption of small displacanent by neglecting same,of the 

higher order terns [ 5 ]  

, 

, . '  (42) 

and t h e  stress-strain relations 
r 

restraints ( i . e .  , pj = = 0 ), hence the above equations take the form I 
I 

K Sin + ~ o a  - oc T I - 
R, t- 

On e h i n a t i n g  from the above two equations, one obtains I- 

the general solution of which becomes 



I .  I 

14 

I where C i s  a constant of integration. 

.. Again, t h i s  may be simplified I 

(51) can be evaluated exactly 

Since we shall deal la ter  with a displacement component 4 which 

i s  perpendicular to the a d s  o f  revolution, vie. 

(53) A = - g S S ; n p +  L d C o A P  . 
I 
I 
I . N=: -0cT R, + (AT&n[! (54) 

c wil l  be dropped out automatically, so we  m a y  w r i t e  
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Eliminating &- f mm equations (49, (47) yields 

(55) 
d t  

td-NT &+ (ATunP 
and by subst i tut ing (34) 

15 

The angular deflection of the tangent to t he  middle surface of  

t h e  s h e l l  can be writ ten as 

(57) . 
by subst i tut ing (54) and ( 5 6 )  one obtains 

T h i s  is t r u e  as long a s  r'is const6nt.which'was assumed f o r  the  

e l l i p t i c a l  head. 1 

I 

2.6 Solution f o r  the boundary condition 

Sin00 there i e  no constraint to the  freo oxpanoion or oontrection 

o f  t h e  tank, the  mean value of the  thennal stresses across t he  cross- 

section must vanish. From equatimS(3), (131, and (38), we have 

(59)  

firthennore, since the  longitudinal displacement must be contin- 

uous across each of t he  joints ,  equations (6), (15), and (35) lead t o  

(60) 

94 = df*r '  

I 

J. 

where , 1' denote the  length of par t  11 and V respectively. 9 
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,Tp s t a t e  the temperature dis t r ibut ion of these two parts. 

However, we a re  not interested i n  the displacement (,( which i s  

1 6  defined by the  constants , fa , and 

By using equations ( 5 ) ,  (17), and (s), t h e  r ad ia l  displacement 

16 

i n  the  cyl indrical  shell for all the different sections becomes 

Ld- .cR,T  (63) 

And the  rotat ion i n  the axial direct ion w i l l  be 
.r 

The displacement A (c.f.p. 14) and rotat ion 8 a t  the jo in t  for 

the  semi-ell iptical  bulkhead are obviously not the same as those from the  

cyl indrical  s h e l l  by comparing equation (53) with ( 6 3 ) ,  and (58) w i t h  

( 64) 
-3 an---*- - - rne aaiAeruncu of these may be i;;*Yarpretsd by the  edge effects 

o f t h e  individual shell parts as developed in the  next chapter. ~ - 

I 

_ .  
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CHAPTEX I11 

I '  

EDGE EFFECTS 

3. l Introduction 

Due t o  ( a )  the abrupt change of  w a l l  thickness, (b) the discon- 

t i n u i t y  of the  curvature of the  meridian, and (c)  t h e  discontinuous gra- 

d ien t  of the thennal loading, i n  certain regions, where continuity of the 

s t ructure  cannot be maintained by membrane forces alone, forces and mo- 

ments w i l l  be induced whose.influence i s  of loca l  character. These edge 

loadings, as they are  usually called, are induced i n  order t o  make the  

rotat ions and di splacments of adjacent w a l l s  continuous. 

tiitin t h e  c o n t h u i t y  of tha strxtilra it? rhd, m e  xay deternine 

the  unknown redundance by imagining t h e  she l l  t o  be physically separated 

a t  t h e  discontinuities.  The edges a t  each cut, i n  general , 'will  have 

d i f fe ren t  amounts of displacements and rotations. A gap i s  sa id  t o  be 

existed,  i f  the membrane stresses alone a re  considered. To restore  the 

continuity, sui table  edge moments and edge shears have t o  be induced, and 

the  gaps a t  each discontinuity will vanish. 

Having expression f o r  t he  rotat ion and displaceanent a t  each edge 

of t h e  discontinuity caused by unit edge shear and moment, it i s  possible 

t o  calculate  the  edge displacements and rotat ions of  the various she l l s  

i n  t e n s  of the  unknown edge loadings. 

qu i res  the  displacements and rotations a t  the  edges of  adjacent members 

t o  be i n  equality. 

The geometrical compatibility re- 

I 

A set of simultaneous Unear  algebraic equations f o r  

t h e  redundance yields t he  solution f o r  the  unknowns. 

17 
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I n  the  first par t  of the next section, Figure 5 shows the  complete 

unknown redundance, the r e l a t ive  manbers, and the gaps induced 'imaginar- 

ily. Given i n  accompany are t h e  compatibility equations which lead t o  a 

general fomulation. 

, 

Generally, fo r  n compatibility equations, a system of l i nea r  

simdtaneous algebraic equations involving n unknown redundance is ob- 

tained[6]. 

a s tep  by s tep procedure has been worked out  i n  the  present analysis. 

The advantage i n  doing so w i l l  be examined later, 

However, instead of solving these n simultaneous equations, 

Furthermore, consider the  abrupt change of w a l l  thickness, the 

existence of t h e  membrane moment 

I 

may have a discontinuity a t  the  jo in t  while membrane s t resses  alone are 

considered, thus violat ing the  moment equilibrium across the  cu t  a t  two 

adjacent shell members. To restore the  continuity, a moment dis t r ibut ion 

method which induces t h e  sui table  edge loadings a t  the  jo in t  has been in- 

troduced corresponding t o  the  'step by s tep procedure. 

Once the  unknown edge loadings have been evaluated, t he  s t resses  

a t  each i n t e r i o r  point of a l l  the  members may be readi ly  obtained by us- 

ing s t r e s s  diagrams plot ted f o r  individual cases and the  displacements 

and rotat ions may l ikewise be computed from the  corresponding equations. 

3.2 Analytic fornulation 

Consider t h e  she l l  shown as Figure 1, We may use the hypothesis 

touched i n  the preceding section, t h a t  is wherever a change in .  thickness, 

curvature o r  temperature gradient, t h e  s h e l l  is imagined to be physically 
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separated. Copsidering the membrane stresses alone, the  adjacent edges 

Lri each cu t  w i l l  have difforent amounts of displacaments and rotations. 

The gaps occured i n  edge displacments and rotat ions require the intro- 

ducing of edge loadings. 

the  edge moments and edge shears introduced should be sui table  not only 

f o r  closing the  gaps but must a lso  be i n  self-equilibrium a t  each cut. 

To preserve the  continuity of the  structure,  

We adopt the  following notations by referr ing t o  figure 5. 

did I 

- The deflection d (i.e., displacement ld i f  i, i s  odd 

and rotat ion $. i f  i ,  is .even) due t o  a u n i t  edge load 

X j  = I 
o f  a cut  which i s  indicated by an unprimed capi ta l  l e t -  

t e r  (i.e., t he  l e t t e r  "A" if i = 1, 2; t he  ' le t ter  "B" 

. The deformation takes place a t  t h a t  side 

.# 

. i f  = 3, 'I; the  le t te r  "C'' i f  = 5,6; . the 

ij  

le t te r  "G" i f  ;I = 11, 12. One may rea l ize  t h a t  "B" 

and "D" a r e  consistent with each other, since they in- 

dicate  saqe edge but d i f fe ren t  cu ts  of part 11). 

= Unknown edge load. This i s  a shear force i f  j i s  odd 

and an edge moment i f  J i s  even. 

/ 
= The deflection M ;  due t o  a u n i t  edge loading 

which,takes place a t  t h a t  s ide of a cut indicated by a 

primed capi ta l  l e t t e r .  The meaning of i 'and is t he  

same as before. 
i 

. .  - The similar quantity t o  N;' but due t o  'the t h e m a l  d 60 4 
loading (membrane s t resses)  . 

/ 
I 

= The similar quantity t o  but due t o  the  t h e m a l  
0 C ; o  t i  

loading . 
. 
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/ Gi= d i .  -4. - These quant i t ies  a re  cal led "influence coefficients." 

t 'd 
They give the re la t ive  defonnation across the  adjacent 

edges of a cut  due t o  u n i t  edge loadings. 

/ 6;o = g  ; o ' d i O  'These quant i t ies  give the r e l a t ive  defonnation across 

the  adjacent edges of a cut due t o  membrane stresses. 

For each cut, the  geometrical compatibility requires t h a t  the  dis- 

placement and rotat ion be continuous a t  the Joint. Figure 5 leads to 

E h16&= E w64' E 866 - E 
where the subscripts a re  denoting the cu ts  and edges a t  which 

tions take place respectively. 

/' 

the  deforma- 

Generally, these 14 compatibility equations together with the  

following two conditions a t  the Joint DB-D'B' may be solved f o r  t h e  16 

unknowns. 
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where n! , R:', 
surface of meridian a t  the  cross sections B, D', B respeotively. 

Knowing t h a t  Rf: R,, 2 I 

R: are the  radius of  curvature of the  middle 

B D' 8 ne : n, 5 I , we may write 

The expressions fo r  the  compatibility equations a re  easily ob- 
f 

tained by the  use of the  edge coefficients o(t' 9 c q ?  gco, 4 0 ,  

the  edge loadings x a s  explained previously, &+ 
For a simple example, one may take f o r  gap 1, o r  cut  A-A'. Ac- 

cording t o  the  l i n e a r i t y  of she l l  theory, the  displacanent w may be w r i t -  

t en  

The cyl indrical  par t  I i tself  is  assumed t o  be long enough so t h a t  the  

cut A m a y  be investigated independently of any other  cut, i f  any, which 

then has no reaction on A. 

Similarly . 

where now the  t e n s  containing xJ 
t he  lower edge. 

& describe the  reactions f r o m  

It i s  necessary t h a t  

f o r  t h e  continuity of  t h e  displacements. 

Equation (70) may be written 
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In the  notation of influence coeff ic ients  (c.f.p. 21), it becomes 

i b i l i t y  

It is c l e a r . t h a t  equation (72) is the  r e s u l t  of the first compat- 

equation i n  (66) . 
The compatibility equations w i l l  i n  general l ead  t o  n simulta- 

neous equations f o r  n unknown redundances, i f  equation (67) is implicit-  

l y  involved. 

By subst i tut ing with equation (67), equation (72) and the sub- 

sequent equations may be wri t ten in t h e  fom ... 

(73) 

c I n  matrix fonn, t h i s  becomes , 

A X +  A,= 0 (74) 
I 

where A is a ylg n matrix, the  vector EL denotes the  r? unknown re- 

dundances and A, is a column matrix containing the  thermal load. 

(74) has the  solution 

X = -A”’ AD (73) 

If c ;  i s  the  circumference of the, s h e l l  at  , and similarly 

Cs the  circumference a t  ’ , Betti’s [7] work theorem leads t o  . 

(76) 
d d 

I n  case ‘for 

Ci = 

which is, f o r  
ci 

example, f u l f i l l e d  by all cyl indrical  members we have 

and t h a t  is known as Maxwell’s reciprocal displacement theorem, Equation 



(75) s t a t e s  t h a t  the matrix is symmetric i n  t h a t  case. 

However, i n  sp i t e  of the above formulation, the  method we are 

employlng here i n  the present analysis i s  no longer a straightforward 

fonn of the  n% ?7 matrix solution as indicated i n  equations (73) and 

(74). The d i f f i c u l t y  i s  i n  the  f ac t  t h a t  pa r t  V I ,  as shown i n  Figure 5, 

cannot be t rea ted  a s  a beam on e l a s t i c  foundation a s  longitudinal s t r i p s  

of the  cyl indrical  w a l l  usually can be, because it i s  formed by individ- 

ual pieces of clamps connecting the cyl indrical  par t  V and tho corrugated 

skin par t  V I I .  

sidered as she l l  construction. 

The simple beam with variable thickness cannot be con- 

The applying force o r  moment per inch 

of t he  periphery a t  one edge i s  no longer i n  self-equilibrium as it i s  

i n  a shell .  Eguations (73) and (74) f a i l  i n  this case as one may real ize  

t h a t  d; &d &\ , which represent the  edge coeff ic ients  a t  gap 4; 

and $3 , %G which represent the edge coeff ic ients  a t  gap 5 f o r  

t he  p a r t  t o  be taken as a f r e e  body, do not exis t .  

The requirement f o r  t he  equilibrium of part V I  forces us t o  con- ? 

s t r u c t  an equivalent step by s tep  procedure f o r  solving the  whole prob- 

l W l .  

The basic  idea i s  t o  close each of the three systems a, b, c 

first. 

B,B' and D' f o r  a u n i t  shear o r  moment acting a t  each of the  three  edges. 

The aoment and shear arised a t  tho j o i n t  of each system w i l l  be known in 

t he  process f o r  calculating the  edge coeff ic ients  by taking each system 

It i s  then possible t o  obtain the displacement and rotat ion a t  

as a continuity.piece. 

hand, gap 3, may then be closed by using the  compatibility equations. 

With the edge coeff ic ients  f o r  systen a, b, c a t  

By t h i s  procedure, the equilibrium state of pa r t  VI may be ob- 

ta ined by considering pa r t s  V and VI as one piece whenever the edge 
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coeff ic ients  a t  F are needed, and by considering partsVI, VII, and V I I I  

t o  be one continuous piece whenever edge coeff ic ients  a t  E' are  needed 

(c.f.p.44 1. 

We demonstrate here the  general considerations and basic  equations 

involved i n  t h i s  s tep by s tep procedure. However, it should be pointed 

out t h a t  no ana ly t ica l  formulation f o r  t he  edge coeff ic ients  will be pre- 

sented i n  this section. The complete solution i n  the  numerical fonn will 

f i n a l l y  be given i n  the following chapter. 

The procedure may be systematized as follows. 

(1) Close the  gap a t  the  f a r  ends from the  gap 2 f o r  each system. 

I n  de t a i l ,  the  compatibility equations are: 

For system a, ,gap 1 

For system b, gap 3 

w 3 c  = E  d3c' 
E 8 3 ~  = f O3G' 

And f o r  system c,. gap 6 

(79)  

, 

It should be understood that  we are now taking the  re la t ive  dis- 

placements and rotat ions a t  t h e  cut we choose as a load te rn  ( i . e . , tLo  ). 

Any edge shears and edge moments appear i n  the  compatibility equations 

should r e l a t e  t o  this load term only. Viewing th i s ,  each of the  above 

systeTatic equations may be written i n  a 2 x 2 matrix form, since it is 

c l e a r  from the above statement that  t he  edges B, B', D' and F' wiU be 
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considered t o  be f ree  a t  the present time. 

We have f o r  gap 1 the equation 

Here x,', x: ara contributions t o  the  resu l tan t  edge effects.  

The influence coeff ic ients  6\i/ a re  the  same a s  described pre- 

& are  the  re la t ive  displacement and r e l a t ive  rota- viously and p,# , 
t ion,  respectively, a t  gap 1 in considering the  membrane stresses done. 

Equation (82) can be solved 

For gap 3 and 6 ,  similar equations as equation (83) may be estab- 

l ished. 

It should be noted further,  t h a t  i n  closing the  gaps 1, 3, and 6 ,  

sone additional contributions t o  t h e  displacements and rotat ions a t  the 

edges B, B', and F' w i l l  be induced. These e f fec t s  have t o  be taken in to  

consideration l a t e r  

(2)  I n  closing the  gaps of system c, one has t o  consider V and 

V I  as w e l l  a s  V I ,  V I 1  and V I I I  as separate continuity pieces. Since V I 1  

a d  V I 1 1  a re  of the same cylinder it is possible t o  take it a s  one piece 

of  a scni- inf ini te  beam on e l a s t i c  foundation. The edge moment and shear 

then occurring a t  G and G' from the redundance a t  edge F' may be obtained 

from the  equations of beans on e l a s t i c  foundation [3]. 

I n  ta'dng V and V I  as a continuity piece, it i s  necessary, ac- 

cording t o  the present hypothesis, t o  take edge D' as a free edge while 

gap 4 and 5 are treated.  

. 
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The edge defomation coefficients a t  the edge F f o r  pieces V and 

V I  w i l l  be taken care of i n  the  next chapter. 

Gap 4, again, may be evaluated by an equation similar t o  equation 

(53) by considering V I ,  V I 1  and VI11 a s  one piece. 

and 6 from t he  edge loadings X1/ , and 81 where the prime denotes the  

The e f fec t s  on gap 5 

/ 
f a c t  t h a t  the  edge quantity x ' is only par t  o f  t he  final value x' are d k 
readi ly  obtained, once the  edge moments and shears a t  each cut  f o r  edge 

un i t  loadings a t  E' have been prepared. 

The edge deformation coefficients f o r  any such cmbined piece ma: 

be computed with the  same notion as i s  shown with the  following example, 

where only the  shear force XJ i s  acting a t  Be 

Fig. 6.--Edge coefficients fo r  conbined pieces 

% a l l  x K m e a n s  the edge e f f ec t s  from the  loading x3 . 
f igurat ion i s  val id  i n  case the edge moment & i s  acting a t  Be 

A similar con- 

Although f igure 6 shows t'ne gap 1 only, it is t rue  f o r  any other system. 

The re l a t ive  displacemnt and rotat ion over t h e  gap 1 w i U  now be 

displacment  and rotation a t  edge A' f r o m  the uni t  shear x3= 1 
The geometrical can?atibil i ty leads to the  result 
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are  from the  applied u n i t  load g3='( only. 

defomation coeff ic ients  f o r  the  system a becoae 
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where superscript  a means system a as one piece is considered, 

Similarly, f o r  a unit moment g,= I , t he  edge defamation co- 

e f f i c i e n t s  f o r  t h e  system a become 
- A  d # 

-I- R423Cz a 4 4  = d44- ' + 0 ( 4 , ' X ,  

K # where 

B o r  D. 

, /;cz m a n s  t h e  edge e f f ec t s  from the  u n i t  noment &== I a t  

With the  general formulation, edge e f f ec t s  f o r  any combined system 

may be evaluated with the  help of equations (85) and (86) 

(3)  With. t he  continuity of each system i n  mind, we may try t o  

close gap 2, the  Jo in t  of t he  three systems. The compatibility equations 

together x i t h  

which may r e f e r  t o  (67)b. 

value. 

f o r  these unknowns, 

Where a prime is t o  d i f f e r  from the  final 

Equation (88) leads t o  a 4 x 4 matrix equation, which may be solved 

However, f o r  the sake of simplicity,  we will deal  with 2 x 2 matrix 

equations only. 

The continuity between system a and b may be restored first. 
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Fig. 7.--Edge effects  for the' continuity of the  
displacments on the  systems 1 and 2 

We have 

where the superscripts a, .t represent tho influence .coefficients fo r  

systan a and C. 

/ 
Again t h e  primed quantit ies indicate  t h a t  t h e  unknowns .X are b 

only parts of the  final values g' . 4 
One may then obtain the  coabined deformation f o r  the  closed 

system a and c which we s h a l l  denote by 3 and 

rotat ion,  respectively, i . e . ,  

f o r  displacenaent and 

. 
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I ro ta t ion  f o r  the  now continuous pieces system a and system C. 

The systems a, b and c may be closed by introducing the edge 

loading solved from the following equations 
\ 

I 
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. 

Fig. 8.--Edge e f f ec t s  f o r  t he  continuity of the  
displacements on the  systm of a, b, and c 

I 

Whore superscripts a, b, and c are f o r  the  systems a, b, and c.respec- 

t ivo ly ,  and double prime indicates the  quant i t ies  ar ised a re  contribu- 

t i o n s  t o  the  unprfmed systen. 
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we have 

and 

By using . ( 95 ) ,  (92) may be rearranged with t h e  subst i tut ion of 
$ 

equation (94) 

One has the complete solution f o r  the edge loading of gap 2 by 

summing up the edge e f fec t s  arised a t  each occasion t reated previously as 

x, -9; + gjl 
&=xi t x: 
8,= xl;- 
X,=XQI  
X , = X ; + X i  
x l o =  x l o ' +  x,o 

Y 
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3.3 Xo3ent Gs t r iSu t ion  

I n  considering tho membrane s t resses  alone, t h e  e d s t e n c e  of the 

I second derivative o f  the  normal displacement d with respect t o  % nay 

I 
12 
I 

generate t h e  i n t r i n s i c  menbrane monent 

where 

(98) 

(99) 

and thickness of t he  shell .  

Wherever .g has a sudden change over the  j o i n t  the i n t r i n s i c  I 
I bending moment 

continuity, the s h e l l  may be imagined t o  be physically separated. One 

may release the  unbalanced moment f l  a t  t h i s  edge by applying a moment 

will be a s tep function at  t h i s  point. To restore  the 

I 

I '  
I 

i n  equilibrium with the  unbalanced one. 

caused by this applying mment may f o m  an additional r e s u l t  over tho 

The displacment  and rotat ion 

r e l a t ive  displacement and rotat ion a t  the gap, and the  equation obtained 

i n  the  previous pa r t  may be eaployed readi ly  t o  close the  gap. The edge 

monent introduced together with the or ig ina l  unbalanced one and the edge 
. .  

shear induced may f o n  an equilibrium systein and continuous over the 

point t h a t  physicial ly  separated. 
I 

However, i n  viewing the process i tself  brings t o  a complicate 

s i tua t ion  when the  jo in t  is no longer simply connected, w h i l e  t o  release 

the  unbalanced moment means t o  t ransfer  the  problem in to  the  fonn which 

may be solved by using equation (96). A moment d is t r ibu t ion  method i s  

introduced as the  following. 

Suppose point A has a step function of  t he  i n t r i n s i c  moment Mot 

applying a moment rc/l which ' i s  physically balanced w i t h  t he  or ig ina l  
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moment. 

Introduce now the cut. .. 

w 

Fig. 9.--Edge e f f ec t s  from the  applied moment 

where the  moment indicated by the dotted l i n e  is t he  i n t r i n s i c  unbalanced 

one. 

The following conditions must be sa t i s f ied .  

x: f x; - M, 

by subst i tut ing (loo), equation (101) may 'be solved 

Consider the  case f o r  gap 2. It is possible t o  use the  same ap- 

proach by applying a moment h/l which wi l l  be physically equilibrium with 

. 

t h e  sum of the i n t r i n s i c  bending moment over edge B, B', and D'. 
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t 
. .  

. F'ig. 10.--Moment distribution for the Joint 
. connecting system a, b, c 

Again, the moment indicated by the dotted l i n e  is the intrinsic unbal- 

anced moments. 

It is necessary that ' 

tUrthonnore, , - 
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The 2 x 2 matrix.involved in this process is nevertheless a sLq- 

ple  form of calculation. Besides, the solution 

only easily checked, but a l s o  the-influence for 

analysis may be seen clearly. 

for each step is not 

each step to the whole 

. 
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CHAPTER IV 

.- --. 
-, 

MUMZRICAL PROCEDURE 

4.1 Description of t h e  construction o f  the -joint 

The solution has been carried out with the following goometqLcal 

charac te r i s t ics  : 

1. The semi-ell iptical  bulkhead, 

V 

---- 

F i g .  12.--Constmction of the  sen i -e l l ip t ica l  bulkhead 

2. The cyl indrical  par t  of the  she l l  may be divided i n t o  several. 

.. . 

par t s ,  the  u?per cylindrical  she l l  and t he  lowor inter tank s k i r t .  The 

u?per p a r t  i t s e l f  consists of two cylinders one of assumed l inea r  thick- 

ness  var ia t ion from 2.32'' t o  0.8" and another cylinder reinforced by stif- 

37 
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fenors with equivalent t h i c h e s s  f r o m  t h e  monont of i n e r t i a  of 1". Vhile , 

t h e  lower portion consis ts  of a plain cy l indr ica l  pa r t  with a thickness 

of  1.k'7'1 (c.f. 2.3, 2.4). The radius of  t h e  cy l indr ica l  s h e l l  has  been 

taken t o  be the  saxe as l9S" throughout. 

3. The boundary condition i s  assumed t o  be the  same as described 

i n  section 2.5. 

4. d =  13% 

5. 

, E = 10, 6 % io6 . Material. i s  alminum. 
i 

TAperature dis t r ibut ion i s  i l l u s t r a t e d  i n  Figure 11; t h e  

s c i i - e l l i p t i c a l  p a r t  has no tmperature  variation. 

6. The reference texperature To is taken t o  be 100' F. 

4.2 we defonnation coeff ic ients  

(1) Systm a 

We consider a general member of  t h i s  system subjected t o  edge 

moments and edge shears a t  both ends. 

I 

<- 

f i g ,  13.--Ceneral maqber and sign conventions 
fo r  t ne  edge moments and edge shears 

m r r . ~  si22 come;::.. 

p l i e d  edge l o a d b g s  ana Lho signs f o r  t h e  displacemnt and rotation. 

t ha  foilohing whenever the  edge coeff ic ients  a t  the  right of  a ' c u t  a re  

needed, t h e  coef f ic ien ts  obtained are from t h e  applying edge loadings a t  

t h e  l e f t  hand s ide  of Figure 12, according t o  t h e  sign conventions f o r  

t h e  displacemnt  and rotation. 

for t he  edge coeff ic ients  are according t o  t h e  ap- 

In 

krd the  edge loadings shown i n  the  r i g h t  
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0 A  * 

39 -- --  

% p2 M2 

0.164 1 -3 0.163 1-4 0.104 1 -3 -0.145 1 -4 
0.163 I -4 ' -0.243 1-5 -0.207 1-4 0,190 1-5 

-0.104 1-3 -0.207 1-4 -0.284 1-3 0.261 1 -& 

-0.145 1-4 -0.190 1-5 -0.261 1-4 0.440 1-5 
(108) 

hand side of Figure 12 have the same sign t o  t h e  edge loadings applied 

a t  t he  l e f t  hand edge of any cut.  

The odga coeff ic ients  i n  the plain cy l indr ica l  p a r t  o'f t he  upper 

cy l indr ica l  shell (par t  I) have been t r ea t ed  as semi-infinite beams on 

e l a s t i c  foundation which i s  due t o  Hetenyi [ 9 ] .  

The coef f ic ien ts  balow are f o r  tho edge loadings a t  the  r i g h t  

hand edge of  p a r t  I, and the  edge loadifigs have the  same sign as t he  edge 

loadings figuged a t  t he  r igh t  hand s ide of  Figure 11. 
\ 

0.23800 1-4" 0.21634 1-4 

-0.21634 1 -4 -0.39330 1-5 
t h e  subscr ipts  f o r  deformations indicate t h e  edge shown i n  Figure 5. 

For p a r t  11, the  cylindFica1 s h e l l  with t h e  assumd l i n e a r  w a l l  

thickness var ia t ion,  t he  homogeneous equation of  t h e  bending theory reads 

where Rq i s  t h e  radius of  t h e  cyl indrical  shel l ,  $ t h e  variable thickness 

of  t'ne shell and D t h e  var iable  she l l  rigidity. 

solved by means of modified 3assel functions [ 9 ] .  

Equation (107) can be 

The solut ion fron d ig i t a l  cornputor l ed  t o  t h e  following resul ts  

(see Figure 13) 

+0.23800 1-4 read 3.23800 x lo-' 



I n  order t o  confozm t h i s  l i nea r  assumption o f  the  thic’mess var- 

i a t i o n ,  an analogous method of model t es t  has been accomplished. The re- 

s u l t  froin a Xoire’model t es t  which simulated the  f i n i t e  beam on t h e  elas- 

t i c  foundation i s  as follows 9 7 

0.189 1-3 .  0.167 1-4 0.101 I -3 -0.150 1-4 

-0.167 1-4 -0.244 1-5 -0.200 1-4 0.189 1-5 

-b.ioi 1-3 -0.200 1-4 -0.237 1-3 0.259 1-4 
\ 

On comparing (103) with (log), it can be seen t h a t  they a re  i n  

good agreement. I n  what follows the  values from equation (109) will be 

u t i l i zed .  

For the  whole. upper cyl indrical  part, t he  deformation coeff ic ients  

caused by t h e  edge loadings 

f ig .  14.--Edge loadings on system a 

nay be obtained by closing the  gap i n  between t h e  j o i n t  o f  pa r t  I and 

part I1 imposed by t h e  applled uni t  edge loadings. 

puted fron t h e  equations (85) and (86),are: 

The quant i t ies  con- - --- 

-3 0.09540 1-4 

-4 -0.12448 1-5 

-3 -0.051140 1-4 
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I 

(110) 
p1 % 

?4 I -0.014211 1 -4 0.00588 I -5 
(2) Systcn b 

In  studying the  edge coefficients of the knuckle part ,  a Geckler- 

type apprmination has been used 1 9 1  . The solution of the governing 

equation A 

contains Kelvin functions. ‘i.mere S i s  the  a rc  length of the toro ida l  

shell, D the  she l l  r ig id i ty ,  = g,(I+US) the assumed l inea r ly  variable 

R m  the  averaged radius of cur- 

vature, and w n  t i e  n o n d  displacment. .By some algebraic transfozma- 

t i o n  of the  solution of equation (lll), the  following edge coeff ic ients  

. thickness, E the modulus of e l a s t i c i ty ,  --- 

- . 

for t he  knuckle have baen c a x i e d  out by an IEY 709 d i g i t a l  conputer 

(see Figure 13). 

t PI MZ 

“ne edge coeff ic ients  obtained by applying unit shear and unit 

mozect a t  the edge of the  e l l i p t i c a l  head are  due t o  an a p p r o ~ a t e  

method from Novozhilov [lo]. 

We have 

4 =  < I *  pt 4- 4 2  h/lZ 
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’ where A is the  displaccwnent described by (53) 

with‘ n, as t he  second principal radius of curvaturs of the middle sur- 

face. , 

*- 

The following coefficients uo obtained (see figure 13) 

A 

0 
For the  

closing t h e  gap 

whole bulkhead, the edge coeff ic ients  may be obtained by 

caused frorn the  displacments discontinuity with the  ap- 

plied edge loading. 

I 

FSg. 15.--Edge loadings on system b 1 - 

The numerical quant i t ies  accomplished by using a desk calculator  

are as follows. . 
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1 
I 

J 

eB' 

tic 
% 

-0.10643 I -3 

0.21911 1-3 

-0.09310 1-3 

0.25009 I -3 

-0.08162 1-3 

0.17276 I -4 

(3 )  System c 

The separated pa r t s  as V and V I 1  may be considered as f i n i t e  

The consideration based on Hetenyi [3] beans on e l a s th  foundation. 

gives us  (see Figure 13.) 

f o r  p a r t  V ' 

and f o r  pa r t  VI1 

P a r t  VI11 has been considered as a sed.-infinite beam on e l a s t i c  

foundation, 

o f  seat ion 2.3 leads t o  the  following edge coefficients.  

The assuned plain cylindrical she l l  arrived fmn a conclusion 

I p2 

-3 

-3 
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The quant i t ies  described i n  (119) may as wel l  be used f o r  the  

systen combined with par t  V I 1  and part V I I I .  

I n  order t o  f ind the edge coefficients f o r  pa r t  V I ,  it is neces- 

sary t o  take V and VI a s  well as V I ,  V I I ,  and V I 1 1  t o  be continuity 

pieces. Since pa r t  V I  is not a she l l  construction but a beam with l i n -  

early varying thickness which connects t he  parts V I 1  and V, the  applied 

unit edge shear o r  unit edge moment a t  one end of the  clamp cannot estab- 

l i s h  the  equifibriuz s t a t e  alone as it does i n  the case of a shel l .  
\ 

To take par t  V and V I  a s  a piece, t he  edge coeff ic ients  a t  F 

may be obtained by superposition. 

-I- 

- 

r 
D' 

t ' I3 

n- .c 

3- 

Fig. 16.--Edge loadings f o r  par t  V and VI 

(a)  given 'state of load 
(b) + (c )  equivalent states t o  (a)  

.- 

I 

- .. . 

The displacments  and' rotations are: 



For C ~ S Q  (1) 

+ (12) % I %  

For case (2)  

and 

45 ’ 

Where notations, except /x: and $! which denote the  edge ef- b 
f e c t s  i n  case (1) and ( Z ) ,  respectively, a r e  the  same as used.before. 

cc 

obtained by considering piece V I  as a cant i lever  beam (p .44  ) 

. ’ Zbr ( 1 1 )  3 d 7  ( I&) 9 d 8  til) c( c I t )  previous computed, 

. n&erical  values c a ~  be used ( equation (117) ). 

One has t o  r ea l i ze  that tne offec t  of  ro ta t ion  at  E w i l l  cause 
:1 

an addi t ional  displacement at F, which is indicated by ’ 

. 
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Taking x t3=1 , and ,4=l , and i n  accompanying with the solu- 

t i ons  f o r  the  cantilever beam (Appendix), we have the following edge co- 

e f f i c i en t s  f o r  the  conbined piece V and V I .  

it is c lea r  t h a t  according t o  Maxwell's theorem 

For the  edge coeff ic ients  a t  E', if one connects par t  V I  with 

pa r t  VII, the  same analysis is true. The thickness of the beam, however, 

w i l l  then be 

9i 
h - h o  = ho + R 

instead of the expression fomulated i n  the previous equations (Appendix). 

he and h are the  thickness a t  E' and F respectively, ,( i s  the  length 

of  t h e  bean, X t he  a x i s  with the  or igin a t  E' is posi t ive toward the 

r igh t  hand edge F. 

changing some governing tenn s. 

Equations derived i n  the Appendixmay be used by 
I 

- We have, by taking V I 1  and V I 1 1  as a semi-infinite beam on elas- 

t i c  fomdation, t he  edge coefficients f o r  V I ,  VII, V I 1 1  t o  be a piece 
i 

are : 

Flnally, f o r  systgn c 
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fig. l7.--Edgo loadings on system c 
\ 

a model of cantilever beams simulating the e l a s t i c  foundation has been 

studied. Tne r e s u l t  i s  a s  follows 

*D' I -0.029 1-3 

4.3 Tmperature CUYW and t h e  edge e f f e c t s  

0.136 1-4 

The temperature dis t r ibut ion curve i l l u s t r a t e d  as i n  Figure 12  

cones fron experimental resul ts .  

p a r t  V and par t  V I I ,  due t o  the construction of the  jo in t ,  the  temperature 

The curve plot ted shows t h a t  i n  between 

changes very rapidly. 

the  present analysis  as  plottod i n  Figure 12. 

good agrement i n  both the upper cyl indrical  par t  and the lower in te r -  

tank s k i r t .  

A subst i tute  ana ly t ica l  curve has been adopted i n  

The modified curve shows 

I n  the jo in t  portion of pa r t  V and pa r t  n, a step function 

has been introduced which reprassnts the  sudden change of tmpera ture  i n  

t h e  face where the  cross sectional area of the s h e l l  is a step function 

i t se l f  across the  joint .  

The tmpera ture  cumo as shown i n  F'igure 12 has been divided in to  

several  sections. 

t h e  temperature curve are  conform with t h e  choice of the  d i f fe ren t  sections 

It i s  obvious t h a t  d i f fe ren t  sections introduced by 

' .  



i n  t he  intortank construction i t s e l f .  

Referring t o  tho coordinate system shown i n  Figure 11, the  ten- 

perature equation from the curve f i t t in ;  may be obtained with a suf f i -  

c ien t  accuracy as: 

where 2 i s  the  a x i s  shown in Figure 11. 

k t h e r ,  stiU i n  pa r t  I1 , 

\ 

For par t  V 

where A T represents the  jmp of the temperature (see Figure 11). 

Tor par t  V I  

T= 00O010.5 ( X - Z  L751 4- 0,0474 (x-zf1?5) 3 
I '  

For part V I 1  

-- 
It i s  assumed t h a t  t h o  t w p r a t u r e  d is t r ibu t ion  a t  pa r t  VI11 i s  

T = 110' F (135) 

throughout, t he  e f fec t  at this portion t o  the  j o i n t  of the  bulkhead w i t h  

t h e  cyl indrical  shell is  negligible. 
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The temperature i n  tho parts 111 and I V  ( the  bulkhead) i s  constant 

7 
d' 

We sha l l  follow, from now on, the  same way as described i n  

Chapter 111, t o  evaluate the problem by considering the  continuity of 

each systa3 fron the f a r  end up t o  the gap 2. 

(1) Systscn a 

Since t h e  tenperatur2 curve shows a constant d i s t r ibu t ion  fm 
\ 

X = 0 t o  8.5,'thero i s  no discontinuity i n  between pa r t  I and p a r t  I1 , 

as f o r  both the  defonat ion  and bonding momont from the  membrane r e su l t s  

are concerned, t h e  systen i t s e l f  is closed excopt a t  the  gap 2. 

. 

By multiplying with OC D , where D is the  bending rigidity, d 
0 

t h e  thermal expansion coeff ic ient ,  R o  t he  common radius of the  cylindri-  

c a l  she l l ,  tho second derivative of equation (131) leads  t o  the  membrane 

momnt ( see equation (IO) ) ' 

f,5 f X 5 J 115, 
For % = 17.5, t ha t  is a t  the r igh t  edge of pa r t  11. 

M =  45432 ( in  
(137) 

where posi t ive sense means a compressive e f f ec t  on the  outer  f i b e r  of the  

s h e l l  . 
By using t h e  edgo coefficients fron equations (110), (116), (129), 

and t h e  solution of equations (93), (94), and (96), t he  d is t r ibu t ion  of 

t he  unbalanced moment gives us the following edge loadings. 

I 



I .  

\ 

Fig. 18.--Edge loadings a t  gap 2 from 
t h e  influence of system a 

where monent indicated by dotted l ine  i s  the i n t r i n s i c  moment fron equaL- 

t i o n  (137). 

where end monent at B is 45932 - 36936 = 89960 

(2) System b 

In  the semi-elliptical bulkhead, the uniform 

edge B’ may be evaluated by using equations (53) and 
5 .  

.. 

contraction a t  the  

(58) 
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We have the following re lat ive displacement and rotat ion a t  B" 

1 / 
Where qZr , yJa i n  t h e  functions defined 9 and /" i n  equa- 

t i on  (90) a re  zero, since we take the continuous temperature curve , 

through pa r t  V t o  pa r t  V I  as a reference.. 

The solution of equation (96) by referr ing t o  Figure 8 gives us: 

P .  

(:) = 

(3)  System c 
I 

The taxperature dis t r ibut ion i n  the  par t  VI1 may be rewrit ten 

The second derivative of equation (142) leads t o  a monent distri- 

bution as: 

M= 7 8 7 7  [ O , O ~ . Z ~ ( X - A I ~ ' ] ~ ) ~  0,284 (~-&1*75)] 
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fo r  X = 37.99, t h a t  is a t  the right edge of par t  V I I ,  

where negative sense means a t ens i le  e f f e c t  on the  outer  f i b e r  of the 

shell .  

The dis t r ibu t ion  of this moment a t  gap 6, x = 37.89, gives us  

. 

f ig .  19.--Distribution of the  unbalanced moment a t  gap 6 

I '  

Edge loadings X i 5 9  X16 w i l l  have an influence on the displace- 

ments a t  edge D'. 
I 

The continuity temperature d is t r ibu t ion  has the  equation across 
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second dorivative leads t o  

T = 0.0126(% -21.75)2-0.284(% -21.75) 

by sabst i tut ing 3c = 25.35 

-0 859 10 d2T 
a x z  
- =  

knowing t h a t  f o r  the  beam 

. .  

where E1 is the  variable bending rigidity of  the  bean, 

and \c\l= ' , the displacement of the beam. 

Finally, we have the  i n t r i n s i c  manbrane moment a t  F 

MF = -5275 (in-lb/in) 

where negative sense s t a t e s  tensile s t resses  of the outside fiber.  

For the  edge of F' we have 

= -6767 (in-lb/in) 

Xence we have f o r  gap 5 the  unbalanced moment 

M5 = -5275-(-6767) = 1492 (in-lb/in) (153) 

The continuity of . t he  joint may be obtained by applying the  

moment which equal t o  the unbalanced one but with different  sign. 

T U s  gives us: 

--- -- k -- 

Fig. 20.--Edge e f f ec t s  at gap 5 
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210 

1282 
(154) 

where the mononts indicatod by dotted l i n e  are  understood t o  be the  

i n t r i n s i c  monents obtainod i n  equations (151) and (152). 

The influence of these applied shear and moment a t  F i n  order t o  . 
res tore  the continuity o f  gap 5 give us  the  displacement and rotat ion a t  

D' . 

0.17254 I -2 

Yor cut  E, E' t he  re lat ive displacernent and rotat ion obtained 

fron the  considoration of the  j-mp o f  temperature and the slope diffor- 

ence of the  r igh t  hand edge and tho  l e f t  hand edge tmpera ture  curves 

are: 
I 

The gap may bo closcd. by introducing the edge moment and edge 

shear:. 

c y .  f I 

3lg. 2l.--Edge loadings a t  gap 4 froa t h e  influence of 
the  s tep function of the  temperature d is t r ibu t ion  
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whore 

-. I- 

i- 

I 

Edge loadings X11.  and X12 will cause addi t ional  deformations a t  

edge D' as: 
#. ) = ( 0.22784) 

0.00686 
L 

Tne di'splacments obtained as (146), (155), and (158) a t  D' give 

the edge e f f ec t s  a t  gap 2 

- - - - d -- 

Fig. 22.--Sdge loadings a t  gap 2 from the 
influence o f  system c 

which has a solution 

(4 ) = ( 2 4 3 )  
x10 563 

e) = (-3. 
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.Finally, L o  r o s u l t m t  of the ekge loadings a t  the  jo in t  o f  the  

sen i -e l l ip t ica l  bulkhead and the  cyl indrical  s h e l l  am as t h e  following 

by using the  sane f igure  as -?igure 5. 

'&era a t  3, t h e  i n t r i n s i c  moxent X = 45932 has been added i n  >I4. B 
Few words must be addsd hcre, since one nay have the,  qxestion 

about tine quant i t ies  of the  edge ef fec ts  i n  gaps 1, 3, 4, 5, and 6, f o r  

res tor ing the  cont inui ty  of gap 2, considoring ,each systern.as a continu- 

i t y  piece. It i s  easy t o  see tha t ,  i n  obt i ining the edge coeff ic ients  

a t  3, 9' a d  D' by considering each systen t o  bo continuity piece, t h e  

u n i t  edge noment and edge shear applied at each edge o f  B, B' and D' 

w i l l  arrive the  edge e f f ec t s  a t  each i n t e r i o r  joint .  Taking these as 

factors ,  t h e  f i n a l  value of  t he  edge e f f e c t s  a t  each i n t e r i o r  j o i n t  may 

then be obtained by multiplying with tho resu l tan t  edge moment and edge 

shear a s  shown i n  (160) (For X4, the quant i ty  w i l l  be 27363; t h i s  is 

so-called edge effect . ) ,  and by summing up t h e  r e s u l t  fron closing each 

of the p r o v i o u  considered gaps. 

Far a clear view, one may r e f e r  t o  Figures 23, 26, and 29, where 

t h e  edge e f f ec t s  a t  each i n t e r i o r  j o in t  f o r  t he  appropriate unit edge 

aoxent, edge shear, o r  dis t r ibut ion noment are obtained f o r  t he  monent 

curve. Since mernbrane s t r e s ses  & = = 0, the  superposition 

I 
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(c.f.p. 3)  loads t o  t he  sun o f  the  s t resses  fron the  edge loads. 

f i m l  rosu l t  i n  t o m s  of the  s t rasses  are plot ted according t o  these 

monent curves. 

Tne 

We nagloct circuiiforontial  s t r e s ses  because (1) membrane @- = o 0 
(2) 5 ", 3 

. 

i 
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CHAPTER V 

DISCUSSION AiiD CO!JCLUSION 

The theo re t i ca l  analysis o f t h e  present work l i e s  with in  the  

range of t h e  linear theory o f  t h i n  shells.  This theory is based upon * .  . 
t h e  assuxption [lo] 

s 5 -  I (161) 
20 Max x, 

where $ i s  the  w a l l  thickness and R, t h e  second pr incipal  radius  of 

curvature o f  t h e  middle surface. 

The above r a t io ,  as may be seen from t h e  example of Chapter IV, 

i s  sat isf iod.  

Due t o  t h e  fac t  of la rge  temperature var ia t ion,  other assumptions 

such as the  displacernents a t  a point be mal l  i n  comparison with the  

thickness o f  t he  s h e l l  i s  no longer as r i g i d  as it should be. 

one has t o  bear i n  mind t h a t  the present tenperature d is t r ibu t ion  may 

occur o n l y  i n  accompanying with the i n t e r n a l  pressure loading. The ef- 

fec t  of the l a t t e r  diminishes tho displacements obtained i n  the  case of 

themal  loading. 

However, 

The l i n e a r  assumption, as w e l l  as the  theore t ica l  anal- 

y s i s  or' t h e  present invostigation, i s  then va l id  f o r  most problems i n  t h e  

s a e  manner. 

In  our exaxple, t h e  boundary condition has been taken t o  be f r e e  

of constraint  a t  both ends. 

aqalysis as far as the  inter tank as a whole is invest igated independently. 

It  will be, of course, suf f ic ien t  in an 

-- 
The resu l tan t  s t r e s ses  as shown i n  Figures 25, 28, and 31 have 
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not  only the  comon points  o f  rn-um stresses with those from an inves- 

t i ga t ion  of the  pressure loading, but a l s o  t he  f i n a l  rosul t ,  p lot ted as 

i n  ,Pigure 28 shows t h a t  t h i  2 A ~ ~ a l  s t resses  considered i n  t h e  present 

case have a release e f f ec t  on t he  s t resses  from the pressure loading i n  

t h e  knuckle of t h e  bulkhead. This  is important, since the  knuckle par t  

w i l l  reach t h e  y ie ld  point first fo r  i n t e rna l  pressure. 
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The displacement and rotation of  the cant i lever  beam (f igure 14) 

may be obtained by considering the l inearized theory of beams. 

" I  

We have 

.. 

\ 

h 
1 
I 

0 - - -  

f I \  

F'ig. 32.--Part V I  as cantilever beam 

Let 

h, bo thickness of  the beam at E'. 

be thickness of  the beax a t  F. 

1 be length ,of the cantilever. 

?c be horizontal axis,  posit ive sense t o  the l e f t  with F 

as origin.  
/' 
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equation (162) may be evaluated exactly. 
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r Let 
h - A o  = a  R .  we have 

and 

\ 

For t h e  displacement 

by subst i tut ing with (166), this may be evaluated 

for x - t p ; d - O  
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we have 

hence 

(2) For To = 0,  

we have 

the integration may be carried out 

for A = ]  Q = O  

we have 

I 

(173) 

(174) 
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hence 

J 

Tor t he  displacement 

x 
d%= / 8, d x  + Ct 

0 

.' 
by subs t i tu t ing  with equation (175) 

we have 

for ;c=J , w = o  

ke have 
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